
CS61B Spring 2024

B-Trees, LLRBs, Hashing
Discussion 07

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

3/6
Project 2A Due

3/8
Lab 7 Due

3/15
Lab 8 Due

CS61B Spring 2024

Content Review

CS61B Spring 2024

B-Trees
B-Trees are trees that serve a similar function to binary trees while ensuring a bushy structure (check: why

don’t BSTs/binary trees generally?). In this class, we’ll often use B-Tree interchangeably with 2-3 Trees.

3 7

4 6 91 2

Each node can have up to 2 items and 3 children. There are variations where these values are higher, known

as 2-3-4 trees (nodes can have up to 3 items and 4 children).

All leaves are the same distance from the root, which makes getting take Θ(log N) time.

CS61B Spring 2024

3 5 7

4

B-Trees

When adding to a B-Tree, you first start by adding to a leaf node, and then pushing the excess items (typically

the middle element) up the tree until it follows the rules (max 2 elements per node, max 3 children per node).

3 7

4 5 91 2 91 2

1 2

6 6

4 96

3 7

5

CS61B Spring 2024

Left Leaning Red Black Trees

LLRBs are a representation of B-trees that we use because it is easier to work with in code. In an LLRB, each

multi-node in a 2-3 tree is represented using a red connection on the left side.

3 7

4 6 91 2

7

3 9

62

41

CS61B Spring 2024

LLRB Rules

Each 2-3 tree corresponds to a (unique) LLRB*. This implies that:

1. The LLRB must have the same number of black links in all paths from root to null (not root to leaf!)

2. A node may not have two red children

3. All red links should be left-leaning

4. Height cannot be more than ~2x the height of its corresponding 2-3 tree

5. Additionally, we insert elements as leaves with red links to their parent node

All these invariants mean that sometimes our LLRB becomes unbalanced (ie. it violates a rule), so we need

some way to fix that.

*2-3-4 trees correspond more generally to regular Red Black Trees, but our focus in 61B is on LLRBs.

CS61B Spring 2024

Why root to null?

Consider the left image below: each leaf is 1 black link away from the root, but it’s not a valid LLRB!

This is because when we convert it to a B-tree, the [3, 7] node will only have 2 children, not 3!

If we check for root-to-null: the right of 3 is 0 black link away, but the other nulls are 1 black link away.

7

3 9

2

3 7

92null

nullnull

null null

CS61B Spring 2024

LLRB Balancing Operations

rotateLeft(A);

A

B

DC

B

DA

C

rotateRight(A);

A

B

D C

B

AD

C

colorFlip(A);

B

A

D C

B

A

D C

we can’t have a right red link

we can’t have 2+ consecutive
(left) red links

we can’t have both child links
of a node be red

CS61B Spring 2024

Hashing
Hash functions are functions that represent objects as integers so we can efficiently use data structures like

HashSet and HashMap for fast operations (ie. get, put/add).

Once we have a hash for our object, we use modulo to find out which “bucket” it goes into. For example, we

can create a hash function for the Dog class by overriding Object’s hashCode():

@Override
public int hashCode() {

return 37 * this.size + 42;
}

Then, when we try to put the dog into a HashSet, the HashSet code might look something like this:

int targetBucket = dog.hashCode() % numBuckets;
addToTargetBucket(dog, targetBucket);

CS61B Spring 2024

CS61B Spring 2024

Hashing
In each bucket, we deal with having lots of items by chaining the items and using .equals to find what we are

looking for. In a HashMap, we’re specifically concerned with equality of keys in key-value pairs (in HashSet,

we only have a value to compare to).

0

1

2

3

<Astro, Jedi>

<Opal, Ali>

<Luna, Elana>

<Fancy, Crystal>

<Tofu, Alexander>

<Artoo, Ali>

**Therefore, it is important that your .equals() function matches the result of comparing hashcodes - if two

items are equal, they must also have the same hashcode**

<Mercan, Ergun>

CS61B Spring 2024

Hashing
The load factor tells us when we should resize. We calculate it by dividing the total number of elements

added by the number of buckets we currently have. When resizing up, if the load factor exceeds some

threshold, we increase the number of buckets we use in the data structure.

Because all elements were initially placed into buckets based on how many buckets were previously

available, we also need to rehash all elements into a potentially new destination bucket when resizing, or else

subsequent calls to get() may fail.*

* Resizing sounds like a linear-time operation…how does that affect the runtimes of our operations?

CS61B Spring 2024

Valid vs. Good Hashcodes
Properties of a valid hashcode:

1) Must be an integer

2) The hashcode for the same object should always be the same

3) If two objects are “equal”, they have the same hashcode

○ Check! What about the reverse?

Properties of a good hashcode:

1) Distributes elements evenly

○ What does this even mean?

CS61B Spring 2024

Worksheet

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15 18

Inserting 18

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15 18

Inserting 38 (part 1)

38

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15

18

Inserting 38 (part 2)

38

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15

18

Inserting 12

3812

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15

18

Inserting 13 (part 1)

3812 13

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

14

10 15

18

Inserting 13 (part 2)

38

12

13

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

18

10 15

14

Inserting 13 (part 3)

38

12

13

CS61B Spring 2024

1A 2-3 Trees and LLRBs Draw what the following 2-3 tree would look like after
inserting 18, 38, 12, 13, and 20.

8

4 6

3 5 7

18

10 15

14

Inserting 20.

38

12

13 20

CS61B Spring 2024

1B 2-3 Trees and LLRBs Convert the resulting 2-3 tree to a red-black tree.

8

4 6

3

5

7

12

10 15 38

18

13

14

20

CS61B Spring 2024

1B 2-3 Trees and LLRBs Convert the resulting 2-3 tree to a red-black tree.

8

4 6

3

5

7

12

10 15 38

18

13

14

20

14

8

6

4

38

20

CS61B Spring 2024

1B 2-3 Trees and LLRBs Convert the resulting 2-3 tree to a red-black tree.

8

4 6

3

5

7

12

10 15 38

18

13

14

20

14

8

6

4

38

20

3 5

7

12

18

10 13

15

CS61B Spring 2024

1C 2-3 Trees and LLRBs

If a 2-3 tree has depth H (that is, the leaves are at distance H from the root), what is the maximum
number of comparisons done in the corresponding red-black tree to find whether a certain key is
present in the tree?

CS61B Spring 2024

1C 2-3 Trees and LLRBs

If a 2-3 tree has depth H (that is, the leaves are at distance H from the root), what is the maximum
number of comparisons done in the corresponding red-black tree to find whether a certain key is
present in the tree?

2H + 2 comparisons (longest path from leaf to root * 2 items per node)

CS61B Spring 2024

1D 2-3 Trees and LLRBs Describe all the balancing operations needed to convert

the final tree after inserting 9 to an LLRB.

3

1

7

5

10

8

CS61B Spring 2024

1D 2-3 Trees and LLRBs Describe all the balancing operations needed to convert

the final tree after inserting 9 to an LLRB.

3

1

7

5

10

8

9

Initial insertion of 9

CS61B Spring 2024

1D 2-3 Trees and LLRBs Describe all the balancing operations needed to convert

the final tree after inserting 9 to an LLRB.

3

1

7

5

10

9

8

After rotateLeft(8)

CS61B Spring 2024

1D 2-3 Trees and LLRBs Describe all the balancing operations needed to convert

the final tree after inserting 9 to an LLRB.

3

1

7

5

9

8

After rotateRight(10)

10

CS61B Spring 2024

1D 2-3 Trees and LLRBs Describe all the balancing operations needed to convert

the final tree after inserting 9 to an LLRB.

3

1

7

5

9

8

After colorFlip(9)

10

CS61B Spring 2024

1D 2-3 Trees and LLRBs Describe all the balancing operations needed to convert

the final tree after inserting 9 to an LLRB.

3

1

7

5

9

8

After colorFlip(7)

10

CS61B Spring 2024

2A Hashing Are the following hashCodes valid? If they are, what are the advantages or disadvantages?
public int hashCode() {

return -1;
}

public int hashCode() {
return intValue() * intValue();

}

// Object's hashCode() based on memory location
public int hashCode() {

return super.hashCode();
}

// return current time as an int
public int hashCode() {

return (int) new Date().getTime();
}

public int hashCode() {
return intValue() + 3;

}

CS61B Spring 2024

2A Hashing Are the following hashCodes valid? If they are, what are the advantages or disadvantages?
public int hashCode() { // Valid, but collisions for everything

return -1;
}

public int hashCode() {
return intValue() * intValue();

}

// Object's hashCode() based on memory location
public int hashCode() {

return super.hashCode();
}

// return current time as an int
public int hashCode() {

return (int) new Date().getTime();
}

public int hashCode() {
return intValue() + 3;

}

CS61B Spring 2024

2A Hashing Are the following hashCodes valid? If they are, what are the advantages or disadvantages?
public int hashCode() { // Valid, but collisions for everything

return -1;
}

public int hashCode() { // Valid, but collisions: consider -3 and 3
return intValue() * intValue();

}

// Object's hashCode() based on memory location
public int hashCode() {

return super.hashCode();
}

// return current time as an int
public int hashCode() {

return (int) new Date().getTime();
}

public int hashCode() {
return intValue() + 3;

}

CS61B Spring 2024

2A Hashing Are the following hashCodes valid? If they are, what are the advantages or disadvantages?
public int hashCode() { // Valid, but collisions for everything

return -1;
}

public int hashCode() { // Valid, but collisions: consider -3 and 3
return intValue() * intValue();

}

// Object's hashCode() based on memory location
public int hashCode() { // Invalid: memory address unique per Integer

return super.hashCode();
}

// return current time as an int
public int hashCode() {

return (int) new Date().getTime();
}

public int hashCode() {
return intValue() + 3;

}

CS61B Spring 2024

2A Hashing Are the following hashCodes valid? If they are, what are the advantages or disadvantages?
public int hashCode() { // Valid, but collisions for everything

return -1;
}

public int hashCode() { // Valid, but collisions: consider -3 and 3
return intValue() * intValue();

}

// Object's hashCode() based on memory location
public int hashCode() { // Invalid: memory address unique per Integer

return super.hashCode();
}

// return current time as an int
public int hashCode() { // Invalid: non consistent for same object

return (int) new Date().getTime();
}

public int hashCode() {
return intValue() + 3;

}

CS61B Spring 2024

2A Hashing Are the following hashCodes valid? If they are, what are the advantages or disadvantages?
public int hashCode() { // Valid, but collisions for everything

return -1;
}

public int hashCode() { // Valid, but collisions: consider -3 and 3
return intValue() * intValue();

}

// Object's hashCode() based on memory location
public int hashCode() { // Invalid: memory address unique per Integer

return super.hashCode();
}

// return current time as an int
public int hashCode() { // Invalid: non consistent for same object

return (int) new Date().getTime();
}

public int hashCode() { // Valid and good
return intValue() + 3;

}

CS61B Spring 2024

2B Hashing

1. When you modify a key that has been inserted into a HashMap will you be able to retrieve that entry

again? Explain.

2. When you modify a value that has been inserted into a HashMap will you be able to retrieve that entry

again? Explain.

CS61B Spring 2024

2B Hashing

1. When you modify a key that has been inserted into a HashMap will you be able to retrieve that entry

again? Explain.

Sometimes: If the hashCode() for the key happens to change as a result of the modification (which is

very likely but not guaranteed), then we won't be able to retrieve the entry in our hashtable (unless we

were to recompute which bucket the new key would belong to)

2. When you modify a value that has been inserted into a HashMap will you be able to retrieve that entry

again? Explain.

CS61B Spring 2024

2B Hashing

1. When you modify a key that has been inserted into a HashMap will you be able to retrieve that entry

again? Explain.

Sometimes: If the hashCode() for the key happens to change as a result of the modification (which is

very likely but not guaranteed), then we won't be able to retrieve the entry in our hashtable (unless we

were to recompute which bucket the new key would belong to)

2. When you modify a value that has been inserted into a HashMap will you be able to retrieve that entry

again? Explain.

Always: The bucket index for an entry in a HashMap is decided by the key, not the value.

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

“Hash browns”: 7

0

1

2

3

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

N = 1
M = 4
N/M = 0.25

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

“Hash browns”: 7

0

1

2

3

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Dim Sum”: 10

N = 2
M = 4
N/M = 0.5

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Hash browns”: 7

“Escargot”: 5
0

1

2

3

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Dim Sum”: 10

N = 3
M = 4
N/M = 0.75

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

0

1

2

3

4

5

6

7

“Hash browns”: 7

“Escargot”: 5

“Dim Sum”: 10

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

“Escargot”: 5

0

1

2

3

4

5

6

7

“Dim Sum”: 10

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

N = 3
M = 8
N/M = 0.375

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

0

1

2

3

4

5

6

7

“Dim Sum”: 10

“Brown Banana”: 1

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Escargot”: 5

N = 4
M = 8
N/M = 0.5

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

0

1

2

3

4

5

6

7

“Dim Sum”: 10

“Brown Banana”: 1 “Burrito”: 2

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Escargot”: 5

N = 5
M = 8
N/M = 0.625

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

0

1

2

3

4

5

6

7

“Dim Sum”: 10

“Brown Banana”: 1 “Burrito”: 2 “Buffalo Wings”: 8

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Escargot”: 5

N = 6
M = 8
N/M = 0.75

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

etc...

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

“Dim Sum”: 10

“Brown Banana”: 1 “Burrito”: 2 “Buffalo Wings”: 8

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Escargot”: 5

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

etc...

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

“Dim Sum”: 10

“Brown Banana”: 1 “Burrito”: 2 “Buffalo Wings”: 8

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Escargot”: 5

N = 6
M = 16
N/M = 0.375

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

etc...

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

“Dim Sum”: 10

“Brown Banana”: 1 “Burrito”: 2 “Buffalo Wings”: 8

“Banh Mi”: 9

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Escargot”: 5

N = 7
M = 16
N/M = 0.4375

CS61B Spring 2024

3A A Side of Hash Browns Draw the HashMap after the following operations.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

etc...

HashMap<String, Integer> hm = new HashMap<>();
hm.put("Hashbrowns", 7);
hm.put("Dim sum", 10);
hm.put("Escargot", 5);
hm.put("Brown bananas", 1);
hm.put("Burritos", 2);
hm.put("Buffalo wings", 8);
hm.put("Banh mi", 9);
hm.put("Burritos", 10);

“Hash browns”: 7

“Dim Sum”: 10

“Brown Banana”: 1 “Burrito”: 10 “Buffalo Wings”: 8

“Banh Mi”: 9

Helpful: A = 0, B = 1, D = 3, E = 4, H = 7

“Escargot”: 5

N = 7
M = 16
N/M = 0.4375

CS61B Spring 2024

3B A Side of Hash Browns

Do you see a potential problem here with the behavior of our HashMap? How could we solve this?

CS61B Spring 2024

3B A Side of Hash Browns

Do you see a potential problem here with the behavior of our HashMap? How could we solve this?

Inserting many words with the same first letter results in that letter’s bucket growing very large, and our

current hashing scheme means that resizing doesn’t help us re-distribute the elements. We could solve this

by having a better hash function!

